大数据商业模式浅析

推荐会员: 点金大数据 所属分类: 行业精选 发布时间: 2015-07-14 14:50

著名管理学大师彼得·德鲁克曾说过,当今企业间的竞争,不是产品的竞争,而是商业模式的竞争。Rappa(2004)认为,商业模式规定了公司在价值链中的位置,指导着公司如何赚取剩余价值;并指出商业模式明确了一个公司开展什么活动来创造价值,在价值链中如何选取上下游合作伙伴以及怎样与客户达成交易、为客户提供价值。
目前,在大数据产业链上有三种大数据公司:
1)基于数据本身的公司(数据拥有者):拥有数据,不具有数据分析的能力;
2)基于技术的公司(技术提供者):技术供应商或者数据分析公司等;
3)基于思维的公司(服务提供者):挖掘数据价值的大数据应用公司;
不同的产业链角色有不同的盈利模式。最近,我按照以上的三种角色,对大数据商业模式做了梳理和细分。
“数据拥有者”的商业模式
数据拥有者,这样的公司有三类:
1.大数据是业务核心,对大数据的重复利用是其发展的原动力,例如Google、Amazon、Inrix等;这种公司具有很强大的大数据技术能力,多数时候大数据技术本身主要用于自身的运作,具有三种产业链角色:数据(+技术)+服务;
2.大数据是作为提高生产效率、增加业务收入或者创造新的收入的使能器,非厂商的主流业务;例如运营商、银行等,运营商的主要业务是通过通信设备提供的各种网络语音和数据业务,目前运营商本身并不通过数据的重复利用为主要手段来盈利;
3.数据中间商,本身不具有创造数据的能力,从各种地方搜集数据进行整合,然后再提取有用的信息进行利用;
    它们的商业模式有:
·2B:面向企业或者公共政府部门,提供数据分析结果的服务;例如Inrix在交通信息领域,面向GPS生产商、和交通规划部门、 FedEX和UPS等物流公司等,出售完整的当前甚至未来的交通状况的模式图或者数据库;
·2C:面向个人,提供基于数据分析结果的服务。例如:Inrix提供一个免费的智能手机应用程序,一方面它可以为用户提供免费的交通信息,另一方面它自己就得到了同步的数据。
·2D:租售数据/信息模式(数据资产分享和交易平台),新的商业模式,把数据/信息作为资产直接进行销售;例如:Twitter把它的数据都通过两个独立的公司授权给别人使用;VISA和MasterCard收集和分析了来自210个国家的15亿信用卡用户的650亿条交易记录,用来预测商业发展和客户的消费趋势。然后,它把这些分析结果卖给其他公司;
    “技术提供者”的商业模式
技术提供者的2B商业模式是目前的主流,有4种类型:
·提供单点技术,pure-play为主,例如:Teradata为沃尔玛和Pop-Tarts这两个零售商提供大数据分析技术,来获得营销点子;
·提供整体解决方案,IT厂商为主,例如:IBM提供软硬一体的大数据解决方案;华为基于IT基础设施领域在存储和计算的优势,提供整体大数据解决方案;
·大数据空间出租模式:大数据计算基础设施上(与云结合),通过出租一个虚拟空间,从简单的文件存储,逐步扩展到数据聚合平台,例如腾讯开放云战略为大数据创业者提供了廉价的数据基础设施,使中小企业也有机会在大数据领域创新业务。
·Bigdata as a service,新的商业模式,提供E2E在线大数据技术或者解决方案。例如 RJMetrics,为电商提供快捷的商业智能在线服务,软件定价为 500 美元每月,客户只需在软件端输入特定数据,RJMetrics 便会将这些信息备份到安全的服务器上,并承诺在 7 日内优化数据用以分析,之后以清晰简洁的界面将数据分析结果反馈给客户。再例如,GoodData主要面向商业用户和IT企业高管,提供数据存储、性能报告、数据分析等工具,将所有商业智能分析所需的数据和任务都搬到了云上;
技术提供者的2C商业模式,目前较少,与cloud结合后有很大的空间,未来是趋势。例如:面向个人的家庭帐单、家庭耗能节能等或者面向个人数据的大数据解决方案。
“服务提供者”的商业模式
服务提供者有两种,一种是应用服务提供者,另一种是咨询服务提供者。
应用服务提供者是基于大数据技术,对外提供服务:
·2B:面向企业或者公共政府部门,提供数据分析结果的服务;例如前面提过的Inrix ;
·2C:面向个人,提供基于数据分析的服务;例如: FlightCaster 和FlyOnTime.us基于分析过去十年里每个航班的情况,然后将其与过去和现实的天气情况进行匹配,预测航班是否会晚点;
咨询服务提供者,提供技术服务支持、技术(方法、商业等)咨询,或者为企业提供类似数据科学家的咨询服务;
·2B 商业模式:定位在某一具体行业,通过大量数据支持,对数据进行挖掘分析后预测相关主体的行为,以开展业务;利用数据挖掘技术帮助客户开拓精准营销或者新业务,有时企业收入来自于客户增值部分的分成。 例如德国咨询公司GFK帮助Telefonica 面向零售商、政府部门、公共机构提供基于地点的人员流动(Footfall)数据:以时间为维度(小时/天/月/年),在特定区域的人员人口统计数据(性别、年龄)和行动等数据; 这类企业成长非常快,一般擅长数据挖掘分析技术,帮助一些数据大户如银行、运营商等开展新的业务。
个人认为,目前产业链上真正的大数据玩家,应该是通过重复利用数据获得利益的公司,例如Google。Google所有的业务都是构建在大数据之上的,索引整个互联网网页,成功地建立了“网页搜索+广告”的商业模式,发展大数据并挖掘大数据的新价值是其不可不为的原动力;Google是大数据最大的玩家,抢占“人”生存数字化、智能化的入口;2012年Google总营收501.75亿美元,利润107.4亿美元,其9成利润来自广告。我在上一篇关于《大数据的商业本质》中提到,有咨询公司预测2017年全球大数据技术(包括技术、工具和服务,该处服务是指大数据支持、培训和专业服务)市场空间约500亿美金(2012年约为50亿美金),约等于Google 的2012年的总营收。“数据为王”或者“数据驱动”的业务内涵和模式是大数据时代的未来利益最大者。
大数据要想落地,必须有两个条件:一是丰富的数据源,二是强大的数据挖掘分析能力。目前,IT领域软件开源盛行,逐步降低了分析技术的门槛。很多企业在大数据战略上受挫,就是因为数据源匮乏。企业要想在大数据时代领先,必须多方合作等方式获取更多的数据,这是大数据的基础,也是大数据战略成败的核心。

 

大数据产业具有无污染、生态友好、低投入高附加值特点,对于我国转变过去资源因素型经济增长方式、推进“互联网+”行动计划、实现国家制造业30年发展目标有战略意义。前几年,国内大数据产业讨论较多、落地较少,商业模式处于初探期,行业处于两种极端:一种是过热的浮躁带来了一定的泡沫和产业风险;一种是怀疑大数据只是炒作,依然坚持传统管理理念、经营模式。但是进入2015年之后,大数据产业告别了泡沫,进入更务实的发展阶段,从产业萌芽期进入了成长期。当前,如何将大数据变现成为业界探索的重要方向。
B2B大数据交易所

国内外均有企业在推动大数据交易。目前,我国正在探索“国家队”性质的B2B大数据交易所模式。
2014年2月20日,国内首个面向数据交易的产业组织—中关村大数据交易产业联盟成立,同日,中关村数海大数据交易平台启动,定位大数据的交易服务平台。2015年4月15日,贵阳大数据交易所正式挂牌运营并完成首批大数据交易。贵阳大数据交易所完成的首批数据交易卖方为深圳市腾讯计算机系统有限公司、广东省数字广东研究院,买方为京东云平台、中金数据系统有限公司。2015年5月26日,在2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会上,贵阳大数据交易所推出《2015年中国大数据交易白皮书》和《贵阳大数据交易所702公约》,为大数据交易所的性质、目的、交易标的、信息隐私保护等指明了方向,奠定了大数据金矿变现的产业基础。
咨询研究报告

国内咨询报告的数据大多来源于国家统计局等各部委的统计数据,由专业的研究员对数据加以分析、挖掘,找出各行业的定量特点进而得出定性结论,常见于“市场调研分析及发展咨询报告”,如“2015~2020年中国通信设备行业市场调研分析及发展咨询报告”、“2015~2020年中国手机行业销售状况分析及发展策略”、“2015年光纤市场分析报告”等,这些咨询报告面向社会销售,其实就是O2O的大数据交易模式。
各行各业的分析报告为行业内的大量企业提供了智力成果、企业运营和市场营销的数据参考,有利于市场优化供应链,避免产能过剩,维持市场稳定。这些都是以统计部门的结构化数据和非结构化数据为基础的专业研究,这就是传统的一对多的行业大数据商业模式。
数据挖掘云计算软件

云计算的出现为中小企业分析海量数据提供了廉价的解决方案,SaaS模式是云计算的最大魅力所在。云计算服务中SaaS软件可以提供数据挖掘、数据清洗的第三方软件和插件。
业内曾有专家指出,大数据=海量数据+分析软件+挖掘过程,通过强大的各有千秋的分析软件来提供多样性的数据挖掘服务就是其盈利模式。国内已经有大数据公司开发了这些架构在云端的大数据分析软件:它集统计分析、数据挖掘和商务智能于一体,用户只需要将数据导入该平台,就可以利用该平台提供的丰富算法和模型,进行数据处理、基础统计、高级统计、数据挖掘、数据制图和结果输出等。数据由系统统一进行管理,能够区分私有和公有数据,可以保证私有数据只供持有者使用,同时支持多样数据源接入,适合分析各行各业的数据,易学好用、操作界面简易直观,普通用户稍做了解即可使用,同时也适合高端用户自己建模进行二次开发。
大数据咨询分析服务

机构及企业规模越大其拥有的数据量就越大,但是很少有企业像大型互联网公司那样有自己的大数据分析团队,因此必然存在一些专业型的大数据咨询公司,这些公司提供基于管理咨询的大数据建模、大数据分析、商业模式转型、市场营销策划等,有了大数据作为依据,咨询公司的结论和咨询成果更加有说服力,这也是传统咨询公司的转型方向。比如某国外大型IT研究与顾问咨询公司的副总裁在公开场合曾表示,大数据能使贵州农业节省60%的投入,同时增加80%的产出。该公司能做出这样的论断当然是基于其对贵州农业、天气、土壤等数据的日积月累以及其建模分析能力。
政府决策咨询智库

党的十八届三中全会通过的《中共中央关于全面深化改革若干重大问题的决定》明确提出,加强中国特色新型智库建设,建立健全决策咨询制度。这是中共中央文件首次提出“智库”概念。
近几年,一批以建设现代化智库为导向、以服务国家发展战略为目标的智库迅速成立,中国智库数量从2008年的全球第12位跃居当前第2位。大数据是智库的核心,没有了数据,智库的预测和分析将为无源之水。在海量信息甚至泛滥的情况下,智库要提升梳理、整合信息的能力必然需要依靠大数据分析。
研究认为,93%的行为是可以预测的,如果将事件数字化、公式化、模型化,其实多么复杂的事件都是有其可以预知的规律可循,事态的发展走向是极易被预测的。可见,大数据的应用将不断提高政府的决策效率和决策科学性。
自有平台大数据分析

随着大数据的价值被各行各业逐渐认可,拥有广大客户群的大中型企业也开始开发、建设自有平台来分析大数据,并嵌入到企业内部的ERP系统信息流,由数据来引导企业内部决策、运营、现金流管理、市场开拓等,起到了企业内部价值链增值的作用。
在分析1.0时代,数据仓库被视作分析的基础。2.0时代,公司主要依靠Hadoop集群和NoSQL数据库。3.0时代的新型“敏捷”分析方法和机器学习技术正在以更快的速度来提供分析结果。更多的企业将在其战略部门设置首席分析官,组织跨部门、跨学科、知识结构丰富、营销经验丰富的人员进行各种类型数据的混合分析。
大数据投资工具

证券市场行为、各类指数与投资者的分析、判断以及情绪都有很大关系。2002年诺贝尔经济学奖授予了行为经济学家卡尼曼和实验经济学家史密斯,行为经济学开始被主流经济学所接受,行为金融理论将心理学尤其是行为科学理论融入金融中。现实生活中拥有大量用户数据的互联网公司将其论坛、博客、新闻报道、文章、网民用户情绪、投资行为与股票行情对接,研究的是互联网的行为数据,关注热点及市场情绪,动态调整投资组合,开发出大数据投资工具,比如大数据类基金等。这些投资工具直接将大数据转化为投资理财产品。
定向采购线上交易平台

数据分析结果很多时候是其他行业的业务基础,国内目前对实体经济的电子商务化已经做到了B2C、C2C、B2B等,甚至目前O2O也越来越流行,但是对于数据这种虚拟商品而言,目前还没有具体的线上交易平台。比如服装制造企业针对某个省份的市场,需要该市场客户的身高、体重的中位数和平均数数据,那么医院体检部门、专业体检机构就是这些数据的供给方。通过获取这些数据,服装企业将可以开展精细化生产,以更低的成本生产出贴合市场需求的服装。假想一下,如果有这样一个“大数据定向采购平台”,就像淘宝购物一样,可以发起买方需求,也可以推出卖方产品,通过这样的模式,外加第三方支付平台,“数据分析结论”这种商品就会悄然而生,这种商品不占用物流资源、不污染环境、快速响应,但是却有“供”和“需”双方巨大的市场。而且通过这种平台可以保障基础数据安全,大数据定向采购服务平台交易的不是底层的基础数据,而是通过清洗建模出来的数据结果。所有卖方、买方都要实名认证,建立诚信档案机制并与国家信用体系打通。
非营利性数据征信评价机构

在国家将公民信息保护纳入刑法范围之前,公民个人信息经常被明码标价公开出售,并且形成了一个“灰色产业”。为此,2009年2月28日通过的刑法修正案(七)中新增了出售、非法提供公民个人信息罪,非法获取公民个人信息罪。该法条中特指国家机关或者金融、电信、交通、教育、医疗等单位的工作人员,不得将公民个人信息出售或非法提供给他人。而公民的信息在各种考试中介机构、房产中介、钓鱼网站、网站论坛依然在出售,诈骗电话、骚扰电话、推销电话在增加运营商话务量的同时也在破坏整个社会的信用体系和公民的安全感。
虽然数据交易之前是交易所规定的经过数据清洗的数据,但是交易所员工从本质上是无法监控全国海量的数据的。数据清洗只是对不符合格式要求的数据进行清洗,主要有不完整的数据、错误的数据、重复的数据三大类。因此,建立非营利性数据征信评价机构是非常有必要的,将数据征信纳入企业及个人征信系统,作为全国征信系统的一部分,避免黑市交易变成市场的正常行为。
除了征信评价机构之外,未来国家公共安全部门也许会成立数据安全局,纳入网络警察范畴,重点打击将侵犯企业商业秘密、公民隐私的基础数据进行数据贩卖的行为。

大数据已经从论坛串场、浮躁的观点逐步走向国家治理体系建设、营销管理、生产管理、证券市场等方面,其商业模式也多种多样。市场经验表明,存在买卖就存在商品经济,具体哪种商业模式占主流将由市场决定。而最终的事实将证明,大数据交易商品经济必然成为“互联网+”的重要组成部分。

来与:http://bbs.gzdsj.com.cn/thread-1972-1-1.html
来源:http://www.ciotimes.com/bi/sjck/86083.html

关键词:

版权声明:本站原创和会员推荐转载文章,仅供学习交流使用,不会用于任何商业用途,转载本站文章请注明来源、原文链接和作者,否则产生的任何版权纠纷与本站无关,如果有文章侵犯到原作者的权益,请您与我们联系删除或者进行授权,联系邮箱:service@datagold.com.cn。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据