标签:LSTM

01月21日

LSTM与GRU模型可视化解析

RNN 会受到短时记忆的影响。如果一条序列足够长,那它们将很难将信息从较早的时间步传送到后面的时间步。 因此,如果你正在尝试处理一段文本进行预测,RNN 可能从一开始就会遗漏重要信息。 在反向传播期间,RNN 会面临梯度消失的问题。 梯度是用于更新神经网络的权重值,消失的梯度问题是当梯度随着时间的推移传播时梯度下降,如果梯度值变得非常小,就不会继续学习。 ...

06月29日

深度解析LSTM神经网络的设计原理

想要搞清楚LSTM中的每个公式的每个细节为什么是这样子设计吗?想知道simple RNN是如何一步步的走向了LSTM吗?觉得LSTM的工作机制看不透?恭喜你打开了正确的文章! 前方核弹级高能预警!本文信息量非常大,文章长且思维连贯性强,建议预留20分钟以上的时间进行阅读。 前置知识1: 简单的循环神经网络,即无隐藏层的循环神经网络,起名叫“simple RNN”,公式如下: ...