标签:GPU

06月27日

TensorFlow 等“开源陷阱”,会掐住中国 AI 企业的命门吗?

近来美国基于出口管制条例(EAR)规范,要求多个不同领域的企业、组织不得与特定的中国企业往来,这其中除了已为外界所知的原料、芯片、零部件、软件以外,也包括不同形式的技术标准与产业联盟组织。这些企业或组织与中国企业之间的往来,多半还是基于封闭式条件环境下的往来关系,通过商业协议或是申请加入组织的条件。但相较于此,对于部分开源(Open source) 的资源,未来是不是...

01月21日

从算力到半导体供应链,硬件如何决定机器学习的研究趋势

论文:COMPUTATIONAL POWER AND THE SOCIAL IMPACT OF ARTIFICIAL INTELLIGENCE 机器学习是一个计算过程,因此它与计算力紧密相关,也就是与承载机器智能算法的芯片和半导体紧密相关。最明显的是,计算力和计算架构决定了机器学习的训练和推断速度,从而影响该技术的发展进度。然而,这些关系远比上面描述的更加微妙:硬件决定了研究者和工程师在设计、开发机器学习模型时...

08月30日

真实到可怕!英伟达MIT造出马良的神笔

记得神笔马良的故事么? 拿到神笔的马良,可以画物品、画动物、画食物,而且,这些画作都可以一秒钟从画面上出来,变成真实世界中存在的东西。 虽然这只是一个童话故事,不过,英伟达和MIT联手的研究,基本上马良的“神笔”造了个八九不离十。 来自英伟达和MIT的研究团队,最近搞出了迄今最强的高清视频生成AI。这个团队,包括来自英伟达的Ting-Chun Wang、刘明宇(Ming-Yu L...

03月08日

陈天奇等提出TVM:深度学习自动优化代码生成器

TVM 是由华盛顿大学在读博士陈天奇等人提出的深度学习自动代码生成方法,去年 8 月机器之心曾对其进行过简要介绍。该技术能自动为大多数计算硬件生成可部署优化代码,其性能可与当前最优的供应商提供的优化计算库相比,且可以适应新型专用加速器后端。近日,这项研究的论文《TVM: End-to-End Optimization Stack for Deep Learning》终于完成,内容包含新方法的介绍与讨论,以及 TVM ...

11月12日

深度学习如何选择合适的GPU?

文章翻译自: Which GPU(s) to Get for Deep Learning(http://t.cn/R6sZh27) 深度学习是一个计算需求强烈的领域,GPU的选择将从根本上决定你的深度学习研究过程体验。在没有GPU的情况下,等待一个实验完成往往需要很长时间,可能是运行一天,几天,几个月或更长的时间。因此,选择一个好的,合适的GPU,研究人员可以快速开始迭代深度学习网络,几个月的实验可以在几天之内跑完,...

08月28日

TensorFlow产品经理:机器学习如何改变未来十年的软硬件?

  最近,Google Brain员工,TensorFlow产品经理Zak Stone在硅谷创业者社群South Park Commons上做了个讲座,谈到了TensorFlow、XLA、Cloud TPU、TFX、TensorFlow Lite等各种新工具、新潮流如何塑造着机器学习的未来。同时,他还暗示了一些还未向公众披露的exciting的事儿。 讲座的题目叫“Tensor Flow, Cloud TPUs, and ML progress”,以下是整个讲座的概要,量子位编译...

08月17日

从GPU、TPU到FPGA:一文读懂神经网络硬件平台

一个简单的性别识别器网络中的 90 年代风格的隐藏节点图像 我的硕士项目是一种类似级联相关(cascade correlation)的神经网络 Multi-rate Optimising Order Statistic Equaliser(MOOSE:多速率优化顺序统计均衡器),可用于日内的 Bund(国库债券产品)交易。MOOSE 曾经是为获取高速的 LEO 卫星信号(McCaw 的 Teledesic)而设计的一点成果,后来在从 LIFFE 迁移到 DTB 时将目...

07月09日

2017大数据版图:大数据、AI与云计算的整合

从2013开始制作大数据版图的Matt Turck刚刚发布了最新的2017年大数据版图,我们一起来看看在这个领域有哪些最新趋势和玩家的分布情况。 说到最近几年最热门的技术流行语,少不了云计算、大数据、人工智能、物联网等热词。不过,尽管人人(至少是企业界)言必称大数据,但是其在企业的采用周期要远远滞后于炒作周期。所以大数据从新奇酷的技术变成核心系统,从炒作到产品部署往往需...

03月22日

为你的深度学习任务挑选最合适GPU

本文作者 Tim Dettmers 是瑞士卢加诺大学信息学硕士,热衷于开发自己的 GPU 集群和算法来加速深度学习。本文的最早版本发布于 2014 年 8 月,之后随着相关技术的发展和硬件的更新,Dettmers 也在不断对本文进行修正,截至目前已经进行了 5 次较大的更新。机器之心今天呈现的这篇是其 2016 年 6 月 25 日的最新更新:「重新编辑了多 GPU 部分;因为不再有重大作用,去掉了简单的...

02月09日

格灵深瞳赵勇谈Nvidia成功背后的远见与坚持

2016年人工智能最吸引眼球的事件莫过于谷歌旗下的DeepMind依靠人工智能算法的阿尔法狗在围棋比赛中大胜人类顶尖选手。但要算商业价值的落地,2016年人工智能的赢家则非Nvidia(英伟达)莫属。这家全球领先的显卡公司最新的季度财报(截至2016年10月30号)显示该公司的营收比去年同期增长54%,尤其是在数据中心业务方面有了两倍多的增长。该公司的股票在过去的一年中也增长了4倍多,稳...

01月06日

机器学习硬件概览:从算法到架构的挑战与机遇

摘要:机器学习在从传感器每天收集的大量数据中提取有用信息上发挥着非常重要的作用。在一些应用上,目的是为了分析并理解数据,从而辨清发展趋势(例如,监控、便携式/穿戴式电子设备)。在其他应用中,分析数据的目的是为了能够基于数据快速作出应对(例如,机器人/无人机、自动驾驶汽车、物联网)。对这些应用而言,出于对隐私、安全的考虑,再加上通信带宽的限制,在传感器附近的...

10月31日

深度学习的“深度”价值是什么?

深度学习的核心技术是几十年前就提出的人工神经网络,如果将人工神经网络比为火箭发动机一代,那么深度学习就是火箭发动机二代,升级了训练方式(Hinton大神首创),加装了高性能计算配置(做游戏显卡起家的Nvidia居功至伟),最关键的是有了大数据燃料,这样一来,我们人类飞抵人工智能星球的能力就大大增强了。这也是为什么神经网络换马甲为深度学习之后,能获得突破性成功(图像...

10月12日

10年GPU通用计算回顾

前言:从世界上第一款GPU横空出世到今天,显卡已经走过了10年历史。GPU在这10年演变过程中,我们看到GPU从最初帮助CPU分担几何吞吐量,到Shader单元初具规模,然后出现Shader单元可编程性,到今天GPU通用计算领域蓬勃发展这一清晰轨迹。 这10年包含了无数设计者艰辛努力的成果,GPU也用自己的发展速度创造了半导体行业的奇迹,而GPU当今成就的见证者,正是我们的无数硬件玩家和游戏...

09月16日

深度学习的黄金搭档:GPU正重塑计算方式

随着神经网络和深度学习研究的不断深入——尤其是语音识别和自然语言处理、图像与模式识别、文本和数据分析,以及其他复杂领域——研究者们不断在寻找新的更好的方法来延伸和扩展计算能力。 几十年来,这一领域的黄金标准一直是高性能计算(HCP)集群,它解决了大量处理能力的问题,虽然成本有点过高。但这种方法已经帮助推动了多个领域的进步,包括天气预测、金融服务,以及能源勘探。...

07月17日

百度研究院余凯:从大数据到人工智能

我是三年前的时候从湾区回国加入百度,开始负责百度的人工智能和深度学习方面的研究。很亲切。回顾这个历史也是满有趣的,当时我在NEC Lab,有好多深度学习方面的工作,今天像Facebook等有很多人在从事深度学习,好多都是从NEC Lab加入的。从湾区回到中国也确实把湾区的一些资源给介绍回去了,像以前我一个很好的朋友Andrew Ng,我也把他忽悠到了百度。 这反映什么呢?以前这些比较...