标签:神经网络

02月23日

深度智能的崛起(三):神经网络研究的三起三落

“世界的尽头,是雄狮落泪的地方,是月亮升起的地方,是美梦诞生的地方。”——大卫《人工智能》 接上文《深度智能的崛起(二)》 ♦神经元与神经网络    一直以来,我们的大脑如何从感知到的信息进行学习和判断,并形成记忆、情感和意识,这对于人工智能研究来讲仍然是一大谜题。深度学习的基础理论源于人工神经网络(Artifical Neural Network, ANN),深度学习通过逐层提取低层特征...

01月12日

胶囊神经网络

斯蒂文认为机器学习有时候像婴儿学习,特别是在物体识别上。比如婴儿首先学会识别边界和颜色,然后将这些信息用于识别形状和图形等更复杂的实体。比如在人脸识别上,他们学会从眼睛和嘴巴开始识别最终到整个面孔。当他们看一个人的形象时,他们大脑认出了两只眼睛,一只鼻子和一只嘴巴,当认出所有这些存在于脸上的实体,并且觉得“这看起来像一个人”。 斯蒂文首先给他的女儿悠悠看...

12月13日

从模型到代码详解网站流量预测

作者:Artur Suilin 下面我们将简要介绍 Artur Suilin 如何修正 GRU 以完成网站流量时序预测竞赛。 预测有两个主要的信息源: 局部特征。我们看到一个趋势时,希望它会继续(自回归模型)朝这个趋势发展;看到流量峰值时,知道它将逐渐衰减(滑动平均模型);看到假期交通流量增加,就知道以后的假期也会出现流量增加(季节模型)。 全局特征。如果我们查看自相关(auto...

10月09日

陈天奇团队发布NNVM深度学习编译器

亚马逊和华盛顿大学今天合作发布了开源的端到端深度学习编译器NNVM compiler。 先提醒一句,NNVM compiler ≠ NNVM。 NNVM是华盛顿大学博士陈天奇等人2016年发布的模块化深度学习系统,今年8月中旬,他们又推出了将深度学习工作负载部署到硬件的端到端IR堆栈TVM,也就是把深度学习模型更简单地放到各种硬件上。 当时,陈天奇把TVM+NNVM描述为“深度学习到各种硬件的完整优化工...

09月12日

关于深度学习科普,看这一篇就够了

(一) 一 2016 年一月底,人工智能的研究领域,发生了两件大事。 先是一月二十四号,MIT 的教授,人工智能研究的先驱者,Marvin Minsky 去世,享年89 岁。 三天之后,谷歌在自然杂志上正式公开发表论文,宣布其以深度学习技术为基础的电脑程序 AlphaGo, 在 2015年 十月,连续五局击败欧洲冠军、职业二段樊辉。 这是第一次机器击败职业围棋选手。距离 97年IBM 电脑击败...

08月17日

从GPU、TPU到FPGA:一文读懂神经网络硬件平台

一个简单的性别识别器网络中的 90 年代风格的隐藏节点图像 我的硕士项目是一种类似级联相关(cascade correlation)的神经网络 Multi-rate Optimising Order Statistic Equaliser(MOOSE:多速率优化顺序统计均衡器),可用于日内的 Bund(国库债券产品)交易。MOOSE 曾经是为获取高速的 LEO 卫星信号(McCaw 的 Teledesic)而设计的一点成果,后来在从 LIFFE 迁移到 DTB 时将目...

04月14日

Geoffrey Hinton:从神经网络黑暗时代坚守到今天的胜利

深度学习泰斗 Geoffrey Hinton 的名字在当今的人工智能研究界可谓是如雷贯耳,他曾发明了玻尔兹曼机(Boltzmann machine),也首先将反向传播(Backpropagation)应用于多层神经网络;不仅如此,他还有 Yann LeCun 和 Ilya Sutskever 等大牛级的学生。近日,Fred Lum 在 THE GLOBE AND MAIL 网站上发布了一篇介绍 Hinton 生平的文章,UC Santa Barbara 计算机科学系助理教授、CMU 博士...

01月06日

机器码农:深度学习自动编程

机器自动编程是人工智能一直以来期望攻克的重要应用领域,随着深度学习的逐步流行,最近在自动编程方向获得了广泛应用并取得了很大进展。深度学习如何指导机器自动编写出能正确执行的代码?本文对这方面的最新技术进展进行了介绍,将主流技术分为“黑盒派”和“代码生成派”两种派别,并分别介绍了对应代表系统:“神经程序解释器”及“层级生成式CNN模型”的工作机理。 随着深度学习技术的...

10月31日

《财富》万字长文回溯深度学习革命

过去四年来许多领域的技术都取得了跨越性的发展。其中,最引人瞩目的是智能手机的语音识别功能比以往有了显著提升。当我们用声音命令手机给另一半打电话时,我们能够与他们取得联系,手机没有再将电话错拨给陌生人或已经不在一起的那个人。 实际上,我们现在越来越多地通过对话与计算机互动,无论是亚马逊的 Alexa、苹果的 Siri、微软的 Cortana,还是谷歌许多产品中的语音反馈功能...

09月27日

美丽的神经网络:多种神经元构筑的深度学习世界

摘要: 新的神经网络架构随时随地都在出现,要时刻保持最新还有点难度。要把所有这些缩略语指代的网络(DCIGN,IiLSTM,DCGAN,知道吗?)都弄清,一开始估计还无从下手。因此,我决定弄一个“作弊表”。这些图里面话的大多 ... 新的神经网络架构随时随地都在出现,要时刻保持最新还有点难度。要把所有这些缩略语指代的网络(DCIGN,IiLSTM,DCGAN,知道吗?)都弄清,一开始估计还...

08月13日

牛津大学计算机系主任谈人工智能:符号主义与神经网络应融合发展

AlphaGo击败李世石的成就让业界对人工智能刮目相看,大家也对deep learning(深度学习)技术既好奇又疑惑,兴奋的同时也面临着研究中的各种困难。在人工智能与机器人峰会上,AlphaGo背后的团队DeepMind成员之一、牛津大学计算机系主任、Oxford-DeepMind Partnership负责人,AAAI、EURAI Fellow 迈克尔伍尔德里奇Michael Wooldridge,就人工智能研究的现状和未来、成就与挑战作了报...

06月27日

MIT与谷歌专家:机器学习和神经科学的相互启发与融合

作者:Adam Henry Marblestone, Greg Wayne, Konrad P Kording  翻译:机器之心 引言:MIT 媒体实验室的 Adam H. Marblestone 与来自谷歌 DeepMind 的 Greg Wayne 等三人合著了一篇论文,其中提到,机器学习最初受到了神经科学的启发,但两个学科目前的研究视角和关注重点则完全不同。而近期出现了两项机器学习方面的进展,或许会将这两个领域看似不同的视角连接起来。对此,本文提...

06月27日

深度学习深度解析

一、概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫游一样,是人类最美好的梦想之一。虽然计算机技术已经取得了长足的进步,但是到目前为止,还没有一台电脑能产生“自我”的意识。是的,在人类和大量现成数据的帮助下,电脑可以表现的十分强大,但是离开了这两者,它甚至都不能分辨一个喵星人和一个汪星人。 图灵(图灵,大家都知道吧。计算机和人工智能的...

11月27日

深度学习在腾讯的平台化和应用实践

引言:深度学习是近年机器学习领域的重大突破,有着广泛的应用前景。随着Google公开Google Brain计划,业界对深度学习的热情高涨。腾讯在深度学习领域持续投入,获得了实际落地的产出。我们准备了四篇文章,阐述深度学习的原理和在腾讯的实践,介绍腾讯深度学习平台Mariana,本文为第一篇。 深度学习(Deep Learning)是近年来机器学习领域的热点,在语音识别、图像识别等领域均取...

07月18日

机器学习进化:从线性模型到神经网络

Reza Zadeh是斯坦福大学工程计算和数学研究所顾问教授,也是Databricks公司技术顾问,他主要专注于机器学习理论和应用,分布式计算,以及离散应用数学。近日,他接受了oreilly网站的采访,尝试谈论了人工智能的各方面。 神经网络已卷土重来,并且作为一种新方法,在机器学习中发挥着越来越重要的角色 通过利用已有算法的监督学习解决方案,最伟大成就已经实现 Spark是一种...